SAMPLE PAPER

issued by CBSE for Term I Exams (2021-22) Mathematics (041) - Class 12

Time Allowed: 90 Minutes Max. Marks: 40

General Instructions:

- 1. This question paper contains three Sections **Section A, B and C**. Each section is compulsory.
- 2. Section A carries 20 Questions and you need to attempt any 16 Questions. Section B carries 20 Questions and you need to attempt any 16 Questions. Section C carries 10 Questions and you need to attempt any 8 Questions.
- 3. There is **no negative marking**. All questions carry equal marks.

Section A

Questions in this section carry 1 mark each.

In this section, attempt any 16 questions (from 01 - 20).

01.
$$\sin \left[\frac{\pi}{3} - \sin^{-1} \left(-\frac{1}{2} \right) \right]$$
 is equal to

(a)
$$\frac{1}{2}$$

(b)
$$\frac{1}{3}$$

$$(c)-1$$

Sol.
$$\sin \left[\frac{\pi}{3} - \left(-\frac{\pi}{6} \right) \right] = \sin \frac{\pi}{2} = 1$$

02. The value of k,
$$(k < 0)$$
 for which the function f defined as $f(x) = \begin{cases} \frac{1 - \cos kx}{x \sin x}, & x \neq 0 \\ \frac{1}{2}, & x = 0 \end{cases}$ is

continuous at x = 0 is

(a)
$$\pm 1$$

$$(b) -1$$

(c)
$$\pm \frac{1}{2}$$

(d)
$$\frac{1}{2}$$

Sol. As f is continuous at
$$x = 0$$
 so, $\lim_{x \to 0} f(x) = f(0)$ i.e., $\lim_{x \to 0} \frac{1 - \cos kx}{x \sin x} = \frac{1}{2}$

$$\Rightarrow \lim_{x \to 0} \frac{2\sin^2 \frac{kx}{2}}{x^2 \left(\frac{\sin x}{x}\right)} = \frac{1}{2}$$

$$\Rightarrow 2 \lim_{(kx/2)\to 0} \frac{\sin^2 \frac{kx}{2}}{\frac{k^2 x^2}{4}} \times \frac{k^2}{4} \times \lim_{x\to 0} \frac{1}{\left(\frac{\sin x}{x}\right)} = \frac{1}{2}$$

$$\Rightarrow 2(1)^2 \times \frac{k^2}{4} \times \frac{1}{1} = \frac{1}{2}$$

$$\Rightarrow k^2 = 1 \qquad \Rightarrow k = \pm 1$$
But $k < 0$ so, $k = -1$.

03. If $A = \begin{bmatrix} a_{ij} \end{bmatrix}$ is a square matrix of order 2 such that $a_{ij} = \begin{cases} 1, & \text{when } i \neq j \\ 0, & \text{when } i = j \end{cases}$, then A^2 is

(a)
$$\begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$$

(b)
$$\begin{vmatrix} 1 & 1 \\ 0 & 0 \end{vmatrix}$$

(c)
$$\begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix}$$

$$(d) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Sol. Let $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \implies A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

$$\therefore \mathbf{A}^2 = \mathbf{A}\mathbf{A} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$\Rightarrow A^2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

04. Value of k, for which $A = \begin{bmatrix} k & 8 \\ 4 & 2k \end{bmatrix}$ is a singular matrix is

(a) 4

$$(b) -4$$

 $(c) \pm 4$

Sol. As $A = \begin{bmatrix} k & 8 \\ 4 & 2k \end{bmatrix}$ is a singular matrix so, $|A| = \begin{vmatrix} k & 8 \\ 4 & 2k \end{vmatrix} = 0$

$$\Rightarrow 2k^2 - 32 = 0$$

$$\Rightarrow$$
 k² = 16

$$\therefore k = \pm 4$$
.

05. Find the intervals in which the function f given by $f(x) = x^2 - 4x + 6$ is strictly increasing

(a) $(-\infty,2)\cup(2,\infty)$

(b)
$$(2, \infty)$$

(c) $(-\infty,2)$

(d)
$$(-\infty,2]\cup(2,\infty)$$

Sol. : f'(x) = 2x - 4

For
$$f'(x) = 2x - 4 = 0$$
 $\Rightarrow x = 2$

Note that f'(x) > 0 for all $x \in (2, \infty)$.

Therefore, f(x) is strictly increasing in $x \in (2, \infty)$.

06. Given that A is a square matrix of order 3 and |A| = -4, then |adj.A| is equal to

(a) -4

(b) 4

(c) - 16

Sol. $\therefore |adj.A| = |A|^{n-1}$, where n is order of A

$$| |adj.A| = (-4)^{3-1} = 16.$$

07. A relation R in set $A = \{1, 2, 3\}$ is defined as $R = \{(1, 1), (1, 2), (2, 2), (3, 3)\}$.

Which of the following ordered pair in R shall be removed to make it an equivalence relation in A?

(a)(1,1)

(b)
$$(1, 2)$$

(c)
$$(2, 2)$$
 (d) $(3, 3)$

Sol. Note that the presence of (1, 2) in R is disturbing symmetry of the relation. So, we should remove the ordered pair (1, 2) so that R becomes a symmetric relation and hence, equivalence relation as well.

If $\begin{bmatrix} 2a+b & a-2b \\ 5c-d & 4c+3d \end{bmatrix} = \begin{bmatrix} 4 & -3 \\ 11 & 24 \end{bmatrix}$, then value of a+b-c+2d is 08.

- (a) 8 (c)4
- By def. of equality of matrices, we get 2a + b = 4, a 2b = -3, 5c d = 11, 4c + 3d = 24. Sol. On solving the equations, we get a = 1, b = 2, c = 3, d = 4. Hence, a+b-c+2d=1+2-3+2(4)=8.
- The point at which the normal to the curve $y = x + \frac{1}{x}$, x > 0 is perpendicular to the line **09.**
 - 3x 4y 7 = 0 is
 - (a) (2, 5/2)

(c) (-1/2, 5/2)

- (d) (1/2, 5/2)
- Here $\frac{dy}{dx} = 1 \frac{1}{x^2}$ so, slope of normal to the curve $y = x + \frac{1}{x}$ will be $\frac{-x^2}{x^2 1}$ Sol.

Also the normal is perpendicular to 3x - 4y - 7 = 0 so, $\left(\frac{-x^2}{x^2 - 1}\right)\left(\frac{3}{4}\right) = -1$

$$\Rightarrow 3x^2 = 4x^2 - 4 \qquad \Rightarrow x^2 = 4 \qquad \therefore x = 2, -2$$
But $x > 0$ so, $x = 2$.

$$\Rightarrow$$
 x² = 4

$$\therefore \mathbf{x} = 2, -2$$

But x > 0 so, x = 2.

Putting x = 2 in $y = x + \frac{1}{x}$, we get : $y = 2 + \frac{1}{2} = \frac{5}{2}$.

Therefore, the required point is $\left(2, \frac{5}{2}\right)$.

 $\sin(\tan^{-1} x)$, where |x| < 1 is equal to **10.**

(a)
$$\frac{x}{\sqrt{1-x^2}}$$

$$(b) \frac{1}{\sqrt{1-x^2}}$$

$$(c) \frac{1}{\sqrt{1+x^2}}$$

(d)
$$\frac{x}{\sqrt{1+x^2}}$$

Let $tan^{-1} x = \theta \Rightarrow x = tan \theta$. Sol.

11. Let the relation R in the set $A = \{x \in Z : 0 \le x \le 12\}$, given by

 $R = \{(a,b): |a-b| \text{ is multiple of 4}\}$. Then [1], the equivalence class containing 1, is

(a) $\{1,5,9\}$

(b) $\{0,1,2,5\}$

(c) **\phi**

- (d) A
- Let $(1,x) \in R$ for all $x \in A \Rightarrow |1-x|$ is multiple of 4. Sol.

That is, x = 1, 5, 9.

Hence, $[1] = \{1, 5, 9\}$.

12. If
$$e^x + e^y = e^{x+y}$$
, then $\frac{dy}{dx}$ is

(a)
$$e^{y-x}$$

(b)
$$e^{x+y}$$

(c)
$$-e^{y-x}$$

(d)
$$2e^{x-y}$$

Sol. On dividing both the sides by
$$e^{x+y}$$
, we get: $e^{-y} + e^{-x} = 1$

So,
$$e^{-y} \left(-\frac{dy}{dx} \right) + e^{-x} (-1) = 0$$

$$\Rightarrow \left(-\frac{\mathrm{d}y}{\mathrm{d}x}\right) - e^{y-x} = 0$$

$$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = -\mathrm{e}^{y-x}$$
.

13. Given that matrices A and B are of order $3 \times n$ and $m \times 5$ respectively, then the order of matrix C = 5A + 3B is

(a)
$$3 \times 5$$
 and $m = n$

(b)
$$3 \times 5$$

(c)
$$3 \times 3$$

(d)
$$5 \times 5$$

Sol. Order of 5A is $3 \times n$ and that of 3B is $m \times 5$.

Also matrices of same order can be added only, that means order of 5A and that of 3B is same. Clearly, 3 = m, n = 5. That is, order of 5A is 3×5 and same order will be of 3B.

Hence, order of C = 5A + 3B will be 3×5 .

14. If
$$y = 5\cos x - 3\sin x$$
, then $\frac{d^2y}{dx^2}$ is equal to

Sol.
$$\frac{dy}{dx} = -5\sin x - 3\cos x$$

$$\Rightarrow \frac{d^2y}{dx^2} = -5\cos x + 3\sin x = -(5\cos x - 3\sin x)$$

$$\Rightarrow \frac{d^2y}{dx^2} = -y$$

15. For matrix
$$A = \begin{bmatrix} 2 & 5 \\ -11 & 7 \end{bmatrix}$$
, $(adj.A)'$ is equal to

(a)
$$\begin{bmatrix} -2 & -5 \\ 11 & -7 \end{bmatrix}$$

$$(b) \begin{bmatrix} 7 & 5 \\ 11 & 2 \end{bmatrix}$$

$$(c) \begin{bmatrix} 7 & 11 \\ -5 & 2 \end{bmatrix}$$

$$(d) \begin{bmatrix} 7 & -5 \\ 11 & 2 \end{bmatrix}$$

Sol. Here adj.A =
$$\begin{bmatrix} 7 & -5 \\ 11 & 2 \end{bmatrix}$$
 :: $(adj.A)' = \begin{bmatrix} 7 & 11 \\ -5 & 2 \end{bmatrix}$.

16. The points on the curve
$$\frac{x^2}{9} + \frac{y^2}{16} = 1$$
 at which the tangents are parallel to y-axis are

(a)
$$(0,\pm 4)$$

(b)
$$(\pm 4,0)$$

(c)
$$(\pm 3,0)$$

(d)
$$(0,\pm 3)$$

Sol. On differentiating w.r.t. x both the sides, we get $\frac{2x}{9} + \frac{2y}{16} \times \frac{dy}{dx} = 0$ i.e., $\frac{dy}{dx} = -\frac{16x}{9y}$

As the tangents are parallel to y-axis so, $-\frac{16x}{9y} = \frac{1}{0} \implies 9y = 0 \implies y = 0$

Put y = 0 in $\frac{x^2}{9} + \frac{y^2}{16} = 1$, we get: $x = \pm 3$.

The required points are $(\pm 3, 0)$.

17. Given that $A = [a_{ij}]$ is a square matrix of order 3×3 and |A| = -7, then the value of

 $\sum\nolimits_{i=1}^{3}a_{i2}A_{i2}$, where $\,A_{ij}\,$ denotes the cofactor of element $\,a_{ij}\,$ is

(a) 7

(b) -7

(c) 0

- (d) 49
- Sol. $\sum_{i=1}^{3} a_{i2} A_{i2} = a_{12} A_{12} + a_{22} A_{22} + a_{32} A_{32} = |A| = -7.$
- 18. If $y = \log(\cos e^x)$, then $\frac{dy}{dx}$ is
 - (a) $\cos e^{x-1}$

(b) $e^{-x} \cos e^x$

(c) $e^x \sin e^x$

(d) $-e^x \tan e^x$

Sol. $y = \log(\cos e^x)$

$$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\cos e^x} \times (-\sin e^x) \times e^x$$

- $\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = -\mathrm{e}^{\mathrm{x}} \tan \mathrm{e}^{\mathrm{x}}$.
- 19. Based on the given shaded region as the feasible region in the graph, at which point(s) is the objective function Z = 3x + 9y maximum?

(a) Point B

(b) Point C

(c) Point D

- (d) every point on the line segment CD
- Sol. Note that $Z_A = 90$, $Z_B = 60$, $Z_C = 180$, $Z_D = 180$.

As Z is maximum at C(15, 15) and D(0, 20) so, maximum value of Z is obtained at all the points of line segment CD.

- **20.** The least value of the function $f(x) = 2\cos x + x$ in the closed interval $\left[0, \frac{\pi}{2}\right]$ is
 - (a) 2

(b) $\frac{\pi}{6} + \sqrt{3}$

(c)
$$\frac{\pi}{2}$$

(d) The least value does not exist

Sol. :
$$f'(x) = -2\sin x + 1$$

For
$$f'(x) = -2\sin x + 1 = 0$$
 $\Rightarrow \sin x = \frac{1}{2}$ $\Rightarrow x = \frac{\pi}{6} \in \left[0, \frac{\pi}{2}\right]$.

Now
$$f(0) = 2\cos 0 + 0 = 2$$
, $f\left(\frac{\pi}{6}\right) = 2\cos\frac{\pi}{6} + \frac{\pi}{6} = \frac{\pi}{6} + \sqrt{3}$, $f\left(\frac{\pi}{2}\right) = 2\cos\frac{\pi}{2} + \frac{\pi}{2} = \frac{\pi}{2} + 0 = \frac{\pi}{2}$.

So, the least value of f(x) is $\frac{\pi}{2}$.

Section B

Questions in this section carry 1 mark each.

In this section, attempt any 16 questions (from 21 - 40).

- **21.** The function $f: R \to R$ defined as $f(x) = x^3$ is
 - (a) one-one but not onto
- (b) not one-one but onto
- (c) neither one-one nor onto
- (d) one-one and onto
- Sol. Let $f(x_1) = f(x_2)$ for $x_1, x_2 \in R$.

$$\Rightarrow x_1^3 = x_2^3$$

$$\Rightarrow \mathbf{x}_1 = \mathbf{x}_2$$

So, f is one-one.

Let $y = x^3$, where y = f(x), $y \in R$.

$$\Rightarrow x = y^{1/3}$$

That is, every image $y \in R$ has a unique pre-image $x \in R$.

So, f is onto.

22. If $x = a \sec \theta$, $y = b \tan \theta$, then $\frac{d^2 y}{dx^2}$ at $\theta = \frac{\pi}{6}$ is

$$(a) - \frac{3\sqrt{3}b}{a^2}$$

(b)
$$-\frac{2\sqrt{3} \, b}{a}$$

(c)
$$-\frac{3\sqrt{3}\,b}{a}$$

(d)
$$-\frac{b}{3\sqrt{3}a^2}$$

Sol. $\therefore \frac{dx}{d\theta} = a \sec \theta \tan \theta, \ \frac{dy}{d\theta} = b \sec^2 \theta$

$$\Rightarrow \frac{dy}{dx} = \frac{dy}{d\theta} \div \frac{dx}{d\theta} = b \sec^2 \theta \times \frac{1}{a \sec \theta \tan \theta} = \frac{b}{a} \times \csc \theta$$

$$\Rightarrow \frac{d^2y}{dx^2} = -\frac{b}{a} \times \csc\theta \cot\theta \times \frac{d\theta}{dx}$$

$$\Rightarrow \frac{d^2y}{dx^2} = -\frac{b}{a} \times \csc\theta \cot\theta \times \frac{1}{a \sec\theta \tan\theta} = -\frac{b}{a^2} \times \cot^3\theta$$

Therefore,
$$\left(\frac{d^2y}{dx^2}\right)_{at} = -\frac{b}{a^2} \times \cot^3\frac{\pi}{6} = -\frac{b}{a^2} \times \left[\sqrt{3}\,\right]^3 = -\frac{3\sqrt{3}\,b}{a^2}\,.$$

23. In the given graph, the feasible region for a LPP is shaded.

The objective function Z = 2x - 3y, will be minimum at

(a) (4, 10)

(b) (6, 8)

(c)(0, 8)

- (d)(6,5)
- Sol. Here $Z_{(4,10)} = -22$, $Z_{(6,8)} = -12$, $Z_{(0,8)} = -24$, $Z_{(6,5)} = -3$.

Clearly, minimum value of Z is '-24' and it is obtained at (0, 8).

- **24.** The derivative of $\sin^{-1}(2x\sqrt{1-x^2})$ w.r.t. $\sin^{-1}x, \frac{1}{\sqrt{2}} < x < 1$, is
 - (a) 2

(b) $\frac{\pi}{2} - 2$

(c) $\frac{\pi}{2}$

- (d) -2
- Sol. Let $z = \sin^{-1} x \Rightarrow x = \sin z$ also, let $y = \sin^{-1} (2x\sqrt{1-x^2})$.

 $\therefore y = \sin^{-1}(2\sin z\sqrt{1-\sin^2 z}) = \sin^{-1}[2\sin z|\cos z|] = \sin^{-1}[2\sin z\cos z] = \sin^{-1}\sin 2z$

$$\Rightarrow$$
 y = sin⁻¹ sin(π – 2z)

$$\Rightarrow$$
 y = $(\pi - 2z)$

$$\therefore \frac{\mathrm{dy}}{\mathrm{dz}} = -2.$$

$$\because \frac{1}{\sqrt{2}} < x < 1 \implies \frac{1}{\sqrt{2}} < \sin z < 1 \implies \frac{\pi}{4} < z < \frac{\pi}{2} \implies 0 < \pi - 2z < \frac{\pi}{2}.$$

- 25. If $A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{bmatrix}$, then
 - (a) $A^{-1} = B$

(b) $A^{-1} = 6B$

(c) $B^{-1} = B$

- (d) $B^{-1} = \frac{1}{6}A$
- Sol. Consider AB = $\begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{bmatrix} = \begin{bmatrix} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 6 \end{bmatrix} = 6 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = 6I$
 - $\Rightarrow \left(\frac{1}{6}A\right)B = I \qquad \therefore B^{-1} = \frac{1}{6}A.$
- **26.** The real function $f(x) = 2x^3 3x^2 36x + 7$ is

- (a) strictly increasing in $(-\infty, -2)$ and strictly decreasing in $(-2, \infty)$
- (b) strictly decreasing in (-2, 3)
- (c) strictly decreasing in $(-\infty,3)$ and strictly increasing in $(3,\infty)$
- (d) strictly decreasing in $(-\infty, -2) \cup (3, \infty)$
- Sol. : $f'(x) = 6x^2 6x 36 = 6(x 3)(x + 2)$

For
$$f'(x) = 6(x-3)(x+2) = 0 \implies x = -2, 3$$

As f'(x) < 0 for all $x \in (-2,3)$

So, f(x) is strictly decreasing in $x \in (-2,3)$.

- 27. Simplest form of $\tan^{-1} \left(\frac{\sqrt{1 + \cos x} + \sqrt{1 \cos x}}{\sqrt{1 + \cos x} \sqrt{1 \cos x}} \right)$, $\pi < x < \frac{3\pi}{2}$ is
 - (a) $\frac{\pi}{4} \frac{x}{2}$

(b) $\frac{3\pi}{2} - \frac{x}{2}$

(c) $-\frac{x}{2}$

- (d) $\pi \frac{x}{2}$
- Sol. $\tan^{-1} \left(\frac{\sqrt{1 + \cos x} + \sqrt{1 \cos x}}{\sqrt{1 + \cos x} \sqrt{1 \cos x}} \right) = \tan^{-1} \left(\frac{\sqrt{2 \cos^2 \frac{x}{2}} + \sqrt{2 \sin^2 \frac{x}{2}}}{\sqrt{2 \cos^2 \frac{x}{2}} \sqrt{2 \sin^2 \frac{x}{2}}} \right)$
 - $\Rightarrow = \tan^{-1} \left(\frac{\sqrt{2} \left| \cos \frac{x}{2} \right| + \sqrt{2} \left| \sin \frac{x}{2} \right|}{\sqrt{2} \left| \cos \frac{x}{2} \right| \sqrt{2} \left| \sin \frac{x}{2} \right|} \right) = \tan^{-1} \left(\frac{-\cos \frac{x}{2} + \sin \frac{x}{2}}{-\cos \frac{x}{2} \sin \frac{x}{2}} \right)$
 - $\Rightarrow = \tan^{-1} \left(\frac{1 \tan \frac{x}{2}}{1 + \tan \frac{x}{2}} \right) = \tan^{-1} \tan \left(\frac{\pi}{4} \frac{x}{2} \right)$
 - $\Rightarrow = \left(\frac{\pi}{4} \frac{x}{2}\right).$

 $\mathrm{As} \ \pi < x < \frac{3\pi}{2} \ \Rightarrow \frac{\pi}{2} < \frac{x}{2} < \frac{3\pi}{4} \ \Rightarrow -\frac{\pi}{2} < \left(\frac{\pi}{4} - \frac{x}{2}\right) < -\frac{\pi}{4} \,.$

- **28.** Given that A is a non-singular matrix of order 3 such that $A^2 = 2A$, then value of |2A| is
 - (a) 4

(b) 8

(c) 64

(d) 16

Sol. $A^2 = 2A$

$$\Rightarrow |A^2| = |2A|$$

$$\Rightarrow |A|^2 = 2^3 |A|$$

 $\Rightarrow |A| = 8$

(:: A is non-singular matrix

Now $|2A| = 2^3 |A| = 8 \times 8 = 64$.

- 29. The value of b for which the function $f(x) = x + \cos x + b$ is strictly decreasing over **R** is
 - (a) b < 1

(b) No value of b exists

(c) $b \le 1$

(d) $b \ge 1$

Sol. As $f'(x) = 1 - \sin x$

Note that f'(x) > 0 for all $x \in R$.

That means, 'no value of b exists' for which the function f(x) is strictly decreasing over R.

- 30. Let R be the relation in the set N given by $R = \{(a,b): a = b-2, b > 6\}$, then
 - (a) $(2,4) \in \mathbb{R}$

(b) $(3,8) \in \mathbb{R}$

(c) $(6,8) \in \mathbb{R}$

- (d) $(8,7) \in \mathbb{R}$
- Sol. Note that, only $(6,8) \in \mathbb{R}$.

As (6,8) satisfies a = b - 2, b > 6.

- 31. The point(s), at which the function f given by $f(x) = \begin{cases} \frac{x}{|x|}, & x < 0 \\ -1, & x \ge 0 \end{cases}$ is continuous, is/are
 - (a) $x \in R$

(b) x = 0

(c) $x \in R - \{0\}$

- (d) x = -1 and 1
- Sol. $: f(x) = \begin{cases} \frac{x}{-x} = -1, & x < 0 \\ -1, & x \ge 0 \end{cases}$

That is, $f(x) = -1 \quad \forall x \in R$.

As f(x) is a constant function so, it is continuous for all $x \in R$.

- 32. If $A = \begin{bmatrix} 0 & 2 \\ 3 & -4 \end{bmatrix}$ and $kA = \begin{bmatrix} 0 & 3a \\ 2b & 24 \end{bmatrix}$, then the values of k, a and b respectively are
 - (a) -6, -12, -18

(b) -6, -4, -9

(c) -6, 4, 9

- (d) -6,12,18
- Sol. As $A = \begin{bmatrix} 0 & 2 \\ 3 & -4 \end{bmatrix}$ so, $kA = \begin{bmatrix} 0 & 2k \\ 3k & -4k \end{bmatrix}$

So,
$$\begin{bmatrix} 0 & 2k \\ 3k & -4k \end{bmatrix} = \begin{bmatrix} 0 & 3a \\ 2b & 24 \end{bmatrix}$$

By the def. of equality of matrices, we get 2k = 3a, 3k = 2b, -4k = 24.

On solving these equations, we get k = -6, a = -4, b = -9.

33. A linear programming problem is as follows:

Minimize Z = 30x + 50y

Subject to constraints,

$$3x + 5y \ge 15,$$

$$2x + 3y \le 18,$$

$$x \ge 0, y \ge 0$$

In the feasible region, the minimum value of Z occurs at

(a) a unique point

- (b) no point
- (c) infinitely many points
- (d) two points only
- Sol. Consider the following graph.

Corner Points	Value of Z
A(0,3)	150
B(0, 6)	300
C(9, 0)	270
D(5, 0)	150

Clearly, the minimum value of Z is 150 and it occurs at A(0, 3) and D(5, 0).

So, this minimum value of Z will occur at all the points (infinitely many points) of line segment joining AD.

- 34. The area of a trapezium is defined by the function f and given by $f(x) = (10+x)\sqrt{100-x^2}$, then the area when it is maximized is
 - (a) 75 cm²

(b)
$$7\sqrt{3} \text{ cm}^2$$

(c)
$$75\sqrt{3} \text{ cm}^2$$

(d)
$$5 \text{ cm}^2$$

Sol. Let
$$u = (10 + x)^2 (100 - x^2)$$
, where $u = [f(x)]^2$

$$\Rightarrow u = (10 + x)^3 (10 - x)$$

$$\Rightarrow \frac{du}{dx} = (10+x)^3(-1) + 3(10-x)(10+x)^2 = (10+x)^2(20-4x)$$

and,
$$\frac{d^2u}{dx^2} = -4(10+x)^2 + 2(20-4x)(10+x)$$

For
$$\frac{du}{dx} = (10+x)^2(20-4x) = 0 \implies x = 5$$
, as $x \ne -10$

$$\because \left(\frac{d^2 u}{dx^2}\right)_{\text{at } x=5} = -4(15)^2 + 0 = -900 < 0 \text{ so, u is maximum at } x = 5.$$

Therefore, f(x) is also maximum when x = 5.

Now maximum area is, $f(5) = (10+5)\sqrt{100-5^2} = 75\sqrt{3}$ cm².

- 35. If A is square matrix such that $A^2 = A$, then $(I + A)^3 7A$ is equal to
 - (a) A

(b)
$$I + A$$

(c) I - A

(d) I

Sol. Consider
$$(I + A)^3 = I^3 + 3I^2A + 3IA^2 + A^3$$

$$\Rightarrow$$
 $(I + A)^3 = I + 3IA + 3A + A^2A$

$$(:: A^2 = A, IA = A)$$

$$\Rightarrow (I+A)^3 = I + 3A + 3A + AA$$

$$\Rightarrow$$
 $(I+A)^3 = I+6A+A$

$$\Rightarrow$$
 $(I + A)^3 = I + 7A$

$$\Rightarrow (I + A)^3 - 7A = I$$
.

36. If
$$\tan^{-1} x = y$$
, then

(a)
$$-1 < y < 1$$

(b)
$$-\frac{\pi}{2} \le y \le \frac{\pi}{2}$$

(c)
$$-\frac{\pi}{2} < y < \frac{\pi}{2}$$

(d)
$$y \in \left\{-\frac{\pi}{2}, \frac{\pi}{2}\right\}$$

Sol. As
$$\tan^{-1} x = y$$
 so, clearly $-\frac{\pi}{2} < y < \frac{\pi}{2}$.

- 37. Let $A = \{1, 2, 3\}$, $B = \{4, 5, 6, 7\}$ and let $f = \{(1, 4), (2, 5), (3, 6)\}$ be a function from A to B. Based on the given information, f is best defined as
 - (a) surjective function
- (b) injective function
- (c) bijective function
- (d) function
- Sol. As every pre-image $x \in A$ has a unique image $y \in B$.

So, f is injective function.

For $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$, then $14A^{-1}$ is given by 38.

(a)
$$14\begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 4 & -2 \\ 2 & 6 \end{bmatrix}$$

(c)
$$2\begin{bmatrix} 2 & -1 \\ 1 & -3 \end{bmatrix}$$

(d)
$$2\begin{bmatrix} -3 & -1 \\ 1 & -2 \end{bmatrix}$$

Sol.
$$14A^{-1} = 14 \times \frac{1}{|A|} (adj.A)$$

$$\Rightarrow 14A^{-1} = 14 \times \frac{1}{7} \begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix}$$

$$\Rightarrow 14A^{-1} = 2\begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix}$$

$$\Rightarrow 14A^{-1} = \begin{bmatrix} 4 & -2 \\ 2 & 6 \end{bmatrix}.$$

- The point (s) on the curve $y = x^3 11x + 5$ at which the tangent is y = x 11 is/are **39.**
 - (a) (-2, 19)

(b) (2, -9)

(c) $(\pm 2,19)$

(d) (-2, 19) and (2, -9)

Sol. We have
$$\frac{dy}{dx} = 3x^2 - 11$$

As tangent is given as y = x - 11 (whose slope is 1) so, $3x^2 - 11 = 1 \implies x = 2, -2$.

That means, y = 8 - 22 + 5 = -9, y = -8 + 22 + 5 = 19.

But (-2, 19) does not satisfy the given equation of tangent.

Hence, (2, -9) is the only required point.

40. Given that
$$A = \begin{bmatrix} \alpha & \beta \\ \gamma & -\alpha \end{bmatrix}$$
 and $A^2 = 3I$, then

(a)
$$1 + \alpha^2 + \beta \gamma = 0$$

(b)
$$1 - \alpha^2 - \beta \gamma = 0$$

(c)
$$3-\alpha^2-\beta\gamma=0$$

(d)
$$3 + \alpha^2 + \beta \gamma = 0$$

Sol.
$$:: A^2 = 3I$$

On comparing the corresponding terms in both matrices, we get $\alpha^2 + \beta \gamma = 3$.

That is, $3 - \alpha^2 - \beta \gamma = 0$.

Section C

Questions in this section carry 1 mark each.

In this section, attempt **any 8 questions** (from **41 - 50**). Questions **46 - 50** are based on **Case-Study**.

- 41. For an objective function Z = ax + by, where a, b > 0; the corner points of the feasible region determined by a set of constraints (linear inequalities) are (0, 20), (10, 10), (30, 30) and (0, 40). The condition on a and b such that the maximum Z occurs at both the points (30, 30) and (0, 40) is
 - (a) b 3a = 0

(b) a = 3b

(c) a + 2b = 0

- (d) 2a b = 0
- Sol. As $Z_{(30,30)} = Z_{(0,40)}$ so, 30a + 30b = 0 + 40b $\Rightarrow 3a = b$ i.e., b - 3a = 0.
- **42.** For which value of m, is the line y = mx + 1 a tangent to the curve $y^2 = 4x$?
 - (a) $\frac{1}{2}$

(b) 1

(c) $\frac{1}{2}$

- (d) 3
- Sol. $y^2 = 4x ...(i)$ and y = mx + 1...(ii)

By (i) and (ii), $(mx + 1)^2 = 4x$

- \Rightarrow m²x² + 2mx + 1 = 4x
- $\Rightarrow m^2x^2 + (2m-4)x + 1 = 0$

As the line (ii) is tangent to the curve (i) so, line will touch the curve at only one point.

Hence we must have $(2m-4)^2 - 4m^2 \times 1 = 0$

- \Rightarrow -16m + 16 = 0
- \Rightarrow m = 1
- 43. The maximum value of $[x(x-1)+1]^{\frac{1}{3}}$, $0 \le x \le 1$ is
 - (a) 0

(b) $\frac{1}{2}$

(c) 1

(d) $\sqrt[3]{\frac{1}{3}}$

Sol. Let
$$f(x) = [x(x-1)+1]^{\frac{1}{3}}, 0 \le x \le 1$$

$$\Rightarrow$$
 f'(x) = $\frac{2x-1}{3(x^2-x+1)^{2/3}}$

For
$$f'(x) = \frac{2x-1}{3(x^2-x+1)^{2/3}} = 0$$
 $\Rightarrow x = \frac{1}{2} \in [0,1]$

So,
$$f(0) = [0(0-1)+1]^{\frac{1}{3}} = 1$$
, $f(\frac{1}{2}) = [(\frac{1}{2})(\frac{1}{2}-1)+1]^{\frac{1}{3}} = (\frac{3}{4})^{1/3}$, $f(1) = [1(1-1)+1]^{\frac{1}{3}} = 1$.

Hence, the maximum value of f(x) is '1'.

- 44. In a linear programming problem, the constraints on the decision variables x and y are $x 3y \ge 0$, $y \ge 0$, $0 \le x \le 3$. The feasible region
 - (a) is not in the first quadrant
 - (b) is bounded in the first quadrant
 - (c) is unbounded in the first quadrant
 - (d) does not exist
- Sol. Consider the graph shown below.

Clearly, the feasible region is bounded in the first quadrant.

- 45. Let $A = \begin{bmatrix} 1 & \sin \alpha & 1 \\ -\sin \alpha & 1 & \sin \alpha \\ -1 & -\sin \alpha & 1 \end{bmatrix}$, where $0 \le \alpha \le 2\pi$, then
 - (a) |A| = 0

(b) $|A| \in (2, \infty)$

(c) $|A| \in (2,4)$

- (d) $|A| \in [2,4]$
- Sol. Consider $|A| = \begin{vmatrix} 1 & \sin \alpha & 1 \\ -\sin \alpha & 1 & \sin \alpha \\ -1 & -\sin \alpha & 1 \end{vmatrix}$

On expanding along R_1 , we get $|A| = 2 + 2\sin^2 \alpha$.

As $-1 \le \sin \alpha \le 1$ for all $\alpha \in [0, 2\pi]$ so, $0 \le \sin^2 \alpha \le 1$

 $\Rightarrow 0 \le 2 \sin^2 \alpha \le 2$

$$\Rightarrow 2 \le 2\sin^2 \alpha + 2 \le 4$$
$$\Rightarrow 2 \le |A| \le 4 \text{ i.e., } |A| \in [2,4].$$

CASE STUDY

The fuel cost per hour for running a train is proportional to the square of the speed it generates in km per hour. If the fuel costs $\stackrel{?}{\underset{?}{?}}$ 48 per hour at speed 16 km per hour and the fixed charges to run the train amount to $\stackrel{?}{\underset{?}{?}}$ 1200 per hour. Assume the speed of the train as v km/h.

Based on the given information, answer the following questions.

46. Given that the fuel cost per hour is k times the square of the speed the train generates in km/h, the value of k is

(a)
$$\frac{16}{3}$$

(b)
$$\frac{1}{3}$$

(d)
$$\frac{3}{16}$$

Sol. Fuel $cost = k(speed)^2$

$$\Rightarrow 48 = k \times (16)^2 \qquad \Rightarrow k = \frac{3}{16}$$

47. If the train has travelled a distance of 500 km, then the total cost of running the train is given by function

(a)
$$\frac{15}{16}$$
 v + $\frac{600000}{\text{v}}$

(b)
$$\frac{375}{4}$$
 v + $\frac{600000}{v}$

(c)
$$\frac{5}{16}$$
 v² + $\frac{150000}{v}$

(d)
$$\frac{3}{16}$$
 v + $\frac{6000}{v}$

Sol. Total cost of running the train (let C) = $\frac{3}{16}$ v²t + 1200t

As the distance covered by train is 500 km so, $t = \frac{500}{v}$

$$\therefore C = \frac{3}{16} v^2 \left(\frac{500}{v}\right) + 1200 \left(\frac{500}{v}\right)$$

$$\Rightarrow C = \frac{375}{4}v + \frac{600000}{v}.$$

- **48.** The most economical speed to run the train is
 - (a) 18 km/h

(b) 5 km/h

(c) 80 km/h

- (d) 40 km/h
- Sol. Note that $\frac{dC}{dv} = \frac{375}{4} \frac{600000}{v^2}$ and $\frac{d^2C}{dv^2} = \frac{1200000}{v^3}$

For
$$\frac{dC}{dv} = \frac{375}{4} - \frac{600000}{v^2} = 0$$
, $v^2 = 6400$ i.e., $v = 80$ km/h

$$\label{eq:continuous} \because \left(\frac{d^2C}{dv^2}\right)_{\text{at }v=80} = \frac{1200000}{\left(80\right)^3} > 0 \ \text{ so, C will be minimum when } v = 80 \ \text{km/h} \,.$$

- 49. The fuel cost for the train to travel 500 km at the most economical speed is
 - (a) ₹ 3750

(b) ₹ 750

(c) ₹ 7500

- (d) ₹ 75000
- Sol. Fuel cost for running 500 km, $\frac{375}{4}$ v = $\frac{375}{4}$ × 80 = 7500 (in ₹).
- 50. The total cost of the train to travel 500 km at the most economical speed is
 - (a) ₹ 3750

(b) ₹ 75000

(c) ₹ 7500

- (d) ₹ 15000
- Sol. Total cost for running 500 km, $\frac{375}{4}$ v + $\frac{600000}{v}$ = $\frac{375}{4}$ ×80 + $\frac{600000}{80}$ = 15000 (in ₹).

ANSWER KEY

- 01. 03. 04. **05. 02.** (d) (c) (b) **06.** (d) **07.** (d) (b) (b) **08.** (a) **09.** (a) **10.** (d) 11. (a) **12.** (c) 13. (b) 14. (a) 15. 17. **19.** 20. (c) **16.** (c) (b) **18.** (d) (d) (c) 21. (d) 22. (a) 23. (c) 24. (d) **25.** (d) **26.** (b) 27. (a) 28. (c) 29. **30.** 31. 32. 33. 34. (b) (c) (a) (b) (c) (c) 35. (d) **36.** (c) 37. (b) 38. (b) **39.** (b) **40.** (c) 41. (a) 42. (b)
- 43. (c) 44. (b) 45. (d) 46. (d) 47. (b) 48. (c) 49. (c)
- **50.** (d)

This sample paper has been issued by CBSE for Term 1 (2021-22) Board Exams of class 12 Mathematics (041).

Note: We've **re-typed** the official sample paper and, also done the necessary corrections at some places.

If you notice any error which could have gone un-noticed, please do inform us via WhatsApp @ +919650350480 (message only) or, via Email at iMathematicia@gmail.com
Let's learn Math with smile:-)

- O.P. GUPTA, Math Mentor

For video lectures, please visit YouTube.com/@theopgupta